Technical Support

{{ post.title }} 글 편집 글 편집 (이전 에디터) 作者 {{ post.author.name }} 完成日期

Version {{ post.target_version }} Product
{{ product.name }}
Tutorial/Manual {{ post.manual_title }} Attached File {{ post.file.upload_filename }}

我们通常称显式方法为阳解法,隐式方法通常称为阴解法。这些都是一种求解时间微分方程的数值分析方法。


显式方法是一种从现在知道的系统状态计算未来时间系统状态的方法,隐式方法是一种从当前和未来时间的系统状态计算未来时间状态的方法。


例如,RecurDyn-Equation-01 称为的微分方程,则显式方法 RecurDyn-Equation-02可以以与 的相同形式表示。

换句话说,当您知道 n 中的状态时,可以马上从 n+1 获取状态。


与之相反,隐式方法像公式 描述的 n+1的状态包含在公式右侧项里面。


显式方法的优点是相对容易编程,计算时间短,但是稳定性差如果不使用足够小且足够稳定的步长大小,则很容易发散。

与众不同,隐式方法当参数设置得当时稳定性高且容易收敛,但计算需要很长时间,因为方程必须按小步求解。


隐式方法具有能够设置足够大步长的优点非常适用于需要长时间解决的问题。此外, 如接触等非线性问题很难用过去的状态去预测未来,因此隐式方法比显式方法更合适。


因此,动力学仿真软件RecurDynamic默认使用隐式方法,但在一些特定问题处理时使用显式方法。

(参考:维基百科 https://en.wikipedia.org/wiki/Explicit_and_implicit_methods)